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Lecture 15:  Lambda Calculus II and Evaluation Order
o Properties of Beta-Reduction: Non-termination and confluence
o Evaluation Strategies and their meaning in programming 

languages
o Haskell Lazy Evaluation:

§ Simultaneous let definitions
§ Infinite Lists



Lambda Calculus: Properties of Beta-Reduction
Recall from last time:

Alpha-Conversion (change of bound variables):  

!x.	E → ' !x'.	(	E	[x	:=	x']	)																				

where x' is a  fresh variable (never seen before in this context). 

Intuitively: change the bound variable x and every occurrence of an x corresponding to this 
binding to a new variable (your choice, but make sure it doesn't conflict with any other 
variables, either bound or free).  

Examples:

!x.	(	!y.	x	y	)			→ ' !x'. ( !y. x' y )

!x.	(	!y.	x	(!x	.	x	y)	)			→ ' !x'. ( !y. x' (!x . x y) )



Lambda Calculus: Properties of Beta-Reduction
Recall from last time:

Beta-Conversion (function application by parameter passing):  

( "x.	E	)	F						→ * E[x	:=	F]	

where the term ( "x.	E	)	has undergone alpha-conversion as necessary to prevent free variable 
capture when making the substitution of F for x in E. 

Examples:

( "x.	(	"y.		x ("x′ .	x'	(	y	x )	)	)	)		z → * ( "y. z ("x′ . x' ( y z ) ) ) )

( "x.	(	"y.		x ("x .	x	(	y	x	)	)	)	)		z → * ( "y. z ("x . x (y x ) ) ) )

( "x.	(	"y.		x ("x .	x	(	y	x	)	)	)	)		y → 3 ( "x.	(	"y′.		x ("x .	x	(	y'	x	)	)	)	)		y → * ( "y'. y ("x . x (y' x ))))

( "x.	(	"y.		y	("y .	y	(	y	x )	)	)	)		y → 3 ( "x. ( "y′. y' ("y . y ( y x ) ) ) ) y
→ 3 ( "x. ( "y′. y′ ("y'' . y'' ( y'' x ) ) ) ) y
→ * ( "y′. y′ ("y′′ . y′′ ( y′′ y ) ) ) )



Lambda Calculus: Properties of Beta-Reduction
Note that it does not matter in principle where the beta-redex is, and there could be more than 
one:

Examples:

("z. ("x.	z	x)	)		y				→ * ("x. y x ) -- redex at top of expression

z ( z ( ("x.	z	x)		y	)				→ * z ( z ( ("x. z x) y ) -- redex deep inside expression

("z. ("x.	z	x) ("y.	y)	)		→ * ("z. z ( "y. y) ) -- redex inside an abstraction

( "x.	x	y)	(( "x.	x) ( "x.		z	x))		→ * ??              -- which one to reduce?



Lambda Calculus: Properties of Beta-Reduction
There may be 0, 1, or more than 1 beta-redex. A lambda-expression with no beta-redexes is 
said to be in normal form.  Such expressions maybe considered to be "values."

true  =def ("x.	"y. x)																												two  =def ("f.	"x. f	(f	x)	)

Evaluating a pure lambda calculus expression means to beta-reduce it to a normal form, if 
possible:

("x.	x	y)	(("x.	x) ("x.		z	x))		 → + (("x.	x) ("x.		z	x))		y			→ + ("x.		z	x)		y		→ + z	y	

But this may not be possible! Beta-reductions may not terminate:

("x.	x	x)	("x.	x	x) → + ("x.	x	x)	("x.	x	x)	→ + ("x.	x	x)	("x.	x	x)	→ + … . .

("x.	(x	x)	x)	("x.	(x	x)	x) → + (("x. (x x) x) "x. (x x) x) ("x. (x x) x) → + … . .

normal form



Lambda Calculus: Properties of Beta-Reduction
When there is more than one redex, there are two important issues:

(1)  Which one to reduce first?     In general, what is our overall strategy for choosing redexes?

(2)  Does it matter which strategy that we use?   What are the consequences of choosing a strategy?

Issue (1) : There are two basic reduction strategies. 

(A) Normal or Leftmost Order:  "The leftmost, outermost redex is always reduced first. That is, 
..... the arguments are substituted into the body of an abstraction before the arguments are 
reduced." (Wikipedia)

("x.	x	y)	(("x.	x) ("x.		z	x))		→ * (("x.	x) ("x.		z	x))		y



Lambda Calculus: Properties of Beta-Reduction
Reduction Strategies

(A) Normal or Leftmost Order:  "The leftmost, outermost redex is always reduced first. That is, 
..... the arguments are substituted into the body of an abstraction before the arguments are 
reduced." (Wikipedia)

("x.	x	y)	(("x.	x) ("x.		z	x))		→ * (("x.	x) ("x.		z	x))		y

(B) Applicative or Strict Order:  "The rightmost, innermost redex is always reduced first. 
Intuitively this means a function's arguments are always reduced before the function itself. 
Applicative order always attempts to apply functions to normal forms, even when this is not 
possible." (Wikipedia)

("x.	x	y)	(("x.	x) ("x.		z	x))		→ * ("x.	x	y) ("x.		z	x)		



Lambda Calculus: Properties of Beta-Reduction

Issue (2): What are the consequences of choosing one strategy over the other?

Several important consequences:

(i)   If there is any reduction sequence which terminates in a normal form, Normal Order will 
find one (which is why it is called "normal" order, since it finds normal forms). 

(ii)  Applicative Order may not terminate, even when there does exist some terminating 
sequence. Example: 

("x.	y)	(("x.	x	x)	("x.	x	x)) → ) y																																																							-- normal order

("x.	y)	(("x.	x	x)	("x.	x	x)) → ) ("x.	y)	(("x.	x	x)	("x.	x	x)) → ) .....     -- applicative order

We explored this in hw 01!      Preorder = normal order             Postorder = applicative



Lambda Calculus: Properties of Beta-Reduction
Issue (2): What are the consequences of choosing one strategy over the other?

(i)   If there is any reduction sequence which terminates in a normal form, Normal Order will 
find one (which is why it is called "normal" order, since it finds normal forms).  

(ii)  Applicative Order may not terminate, even when there does exist some terminating 
sequence. ! ← ... ! ←

(iii)  Beta-reduction is confluent, so when normal forms exist, they are unique:

Confluence: If E reduces to two different expressions F ≠ 5, 
then F and G both reduce to a common term H:

F G

E
implies

F

E

H

G



Lambda Calculus: Properties of Beta-Reduction
Issue (2): What are the consequences of choosing one strategy over the other?

(i)   If there is any reduction sequence which terminates in a normal form, Normal Order will 
find one (which is why it is called "normal" order, since it finds normal forms).  

(ii)  Applicative Order may not terminate, even when there does exist some terminating 
sequence. ! ← ... ! ←

(iii)  Beta-reduction is confluent, so when normal forms exist, they are unique:

Punchline: Normal Order will find a unique normal form when one exists; Applicative Order 
may not terminate, even when a normal form exists, but if it does, then that normal form is 
unique.

If F and G are normal 
forms, then F = H = G.



So this means that except for the problem of non-termination, you will always get 
the same answer, no matter what strategy you use (even when we add arithmetic 
and other computational processes):

(\x ->  x * 3) ((\y -> y + 2) 5 ) 

21

((\y -> y + 2) 5 ) *  3                (\x ->  x * 3)  (5 + 2) 

applicative ordernormal order

(5 + 2) *  3 (\x ->  x * 3) 7

7 * 3

Evaluation Order in Programming Languages



Most languages use applicative/strict evaluation for function calls, so for 
example in Python we would have the following sequence of events:

def times3(x):                        def plus2(y):
return x * 3                          return y + 2

times3( plus2 ( 5 ) )    

evaluate 5

pass parameter to plus2:   
y = 5

evaluate 5 + 2

return value 7

pass parameter to times3:  
x = 7

evaluate 7 * 3

return 21                

(\x ->  x * 3) ((\y -> y + 2) 5 ) 

21

7 * 3

(\x ->  x * 3) (5 + 2) 

(\x ->  x * 3) 7

Evaluation Order in Programming Languages



However, most languages also use some non-strict evaluation strategies, especially 
in two cases: Boolean operators and conditionals (if-then-else).

"Short-Circuit" Evaluation of Boolean Expressions:

Evaluation Order in Programming Languages



However, most languages also use some non-strict evaluation strategies, especially in two 
cases: Boolean operators and conditionals (if-then-else).

"Lazy" Evaluation of If-Then-Else:

if A then B else C      --evaluate A, then evaluate
--only one of B or C

def ohNo(x):
return ohNo(x)

def test(x):
if x > 0:

return "Positive!"
else:

return ohNo(x)

test(10) => "Positive!"    cond( 10>0,10,ohNo(10)) => .....

test(-1)  =>  ......       cond( -1>0,-1,ohNo(-1) )=> ..                                               

Evaluation Order in Programming Languages

def cond(A,B,C):
if A:

return B
else:

return C



Haskell uses a version of Normal Order, called Lazy Evaluation, in which 
evaluation is ONLY done when absolutely necessary.  

times3 x = x * 3             plus2 y = y + 2

(times3 (plus2 5))   =  (\x ->  x * 3) ((\y -> y + 2) 5 )

=  (((\y -> y + 2) 5 ) * 3)

=  ((5 + 2) * 3) 

=  (7 * 3)

=  21

This is normal order evaluation. 

Evaluation Order in Programming Languages



But there is a serious efficiency problem with normal order: expressions may be 
duplicated and have to be evaluated multiple times:

square3 x = x * x * 3             plus2 y = y + 2

(square3 (plus2 5)) 

=  (\x -> x * x * 3) ((\y -> y + 2) 5 )

=  (((\y -> y + 2) 5 ) * ((\y -> y + 2) 5 )  * 3)

=  ((5 + 2) * ((\y -> y + 2) 5 )  * 3)

=  (7 * ((\y -> y + 2) 5 ) * 3)

=  (7 * (5 + 2) * 3)

=  (7 * 7 * 3) 

=  (49 * 3) =  147

Evaluation Order in Programming Languages



Lazy evaluation fixes this by creating a temporary variable bound to the 
expression (called a "thunk") which is then only evaluated once:

square3 x = x * x * 3             plus2 y = y + 2

(square3 (plus2 5)) 

= (\x -> x * x * 3) ((\y -> y + 2) 5 )

=  (thunk * thunk * 3)
where thunk = ((\y -> y + 2) 5 ) 

=  (thunk * thunk * 3)
where thunk = (5 + 2) 

=  (thunk * thunk * 3)
where thunk = 7

=  (7 * thunk * 3) where thunk = 7

=  (7 * 7 * 3) = (49 * 3) =  147

Evaluation Order in Programming Languages

This is the 
programming 
language version of 
"memoizing."



let and where expressions allow you to create local variables and avoid having to 
write lots of helper functions. 

The parameters in a lambda expression are local variables which only have meaning 
inside the body of the lambda expression:

(\x -> x + 2*x – 1)

This is a familiar concept in programming languages:

def area(r):
pi = 3.1415
return pi * r * r

In Haskell this is done using the let expression:

let <bindings> in <expression>

Scope of x

Scope of bindings

Recall: Let and Where Expressions in Haskell

Scope of r

Scope of pi



Let and Simultaneous Equations
Lazy evaluation in Haskell means that no expression is evaluated until it absolutely 
has to be. So in a let, nothing is evaluated until the variable has to be used; the
net result is that equations in a let are "simultaneous" and order does not matter:

cylinder r h =
let pi = 3.1415

sideArea = 2 * pi * r * h
topArea  = pi * r^2

in sideArea + 2 * topArea

cylinder r h =
let sideArea = 2 * pi * r * h

pi = 3.1415
topArea  = pi * r^2

in sideArea + 2 * topArea

cylinder r h =
let sideArea = 2 * pi * r * h

topArea  = pi * r^2
pi = 3.1415

in sideArea + 2 * topArea

All these do exactly 
the same thing!

This is another example of how 
Haskell follows mathematical 
practice, not imperative 
programming.



Let and where in detail: how are bindings evaluated?
When we think of bindings as simultaneous equations, we see how Haskell 
interprets equations in let and where:

x = 2 * z                        x = 10
y = 4                            y = 4
z = y + 1                        z = 5

test = let x = 2 * z
y = 4
z = y + 1

in (x,y,z)

test2 = (x,y,z)  where
x = 2 * z
y = 4
z = y + 1

equivalent to

Main> :r
[1 of 1] Compiling Main 
( Main.hs, interpreted )
Ok, one module loaded.
Main> test
(10,4,5)
Main> test2
(10,4,5)



The same thing is true of equations in your code:

Main> :r
[1 of 1] Compiling Main 
Main.hs, interpreted )
Ok, one module loaded.
Main> x
10
Main> y
4
Main> z
5

Let and where in detail: how are bindings evaluated?



This leads to the following behavior with sets of bindings that have no solution as a 
set of simultaneous equations:

Let and where in detail: how are bindings evaluated?

Gets into infinite digression trying 
to figure out value of x! Had to hit 
control-c to stop it. 



Haskell uses lazy evaluation by default, although you can modify this to make 
functions strict. 

Main> x = x + 1
Main> "NOOOO, DONT DO IT!!!!!"
"NOOOO, DONT DO IT!!!!!"
Main> x

-- Infinite digression, hit Control-c

If strict evaluation were being used, then x + 1 would be evaluated first, and x is 
unbound (since binding to x has not yet been made), as if

Main> x = x + 1

<interactive>:47:5: error: Variable not in scope: x
Main>

Evaluation Order: Strict vs Lazy



But Haskell uses lazy evaluation, so 

Main> x = x + 1
Main> x

Look up x, substitute the binding:

(x + 1)

Hm... look up x, substitute the binding:

((x + 1) + 1)

Hm... look up x, substitute the binding:

(((x + 1) + 1) + 1)

etc. ad infinitum....

Evaluation Order: Strict vs Lazy



This explains how simultaneous equations in let are evaluated, instead of storing 
values in the state/environment, we store unevaluated expressions; we only evaluate 
them when we have to:

test = let x = 2 * z
y = 4
z = y + 1

in x

Main> test          Bindings: [(x,(2 * z)), (y,4), (z,(y+1))]
10

eval( test )  
eval( x )    -- look up x and substitute
eval( 2 * z )

eval( z )
eval( y + 1 )

eval( y )
=> 4

=> 5
=> 10

Evaluation Order: Strict vs Lazy


